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Abstract. Special features of atomic vacancies in oxides of the perovskite family have been
studied within the framework of the Green function method. It has been shown that, in
accordance with experiments, the oxygen vacancy has both shallow and comparatively deep
levels corresponding to different charge states. The single-charged oxygen vacancy has a deep
level and, hence, it could be a good trap for electrons. We shall show that, owing to interaction
with the lattice polarization, an electron is captured by one of the neighbours to the vacancy
ions. As a result the single-charged oxygen vacancy proves to be a dipole centre. Peculiarities in
the optical absorption spectra connected with the single-charged oxygen vacancy are discussed.

1. Introduction

The thermal treatment of oxides of the perovskite family (OPFs) is known to lead to drastic
change in electroconductivity. This is usually associated with the oxygen vacancies VO .
The vacancies are believed to arise on heating under vacuum, and to disappear under an
oxidizing ambient. When VO arises, two electrons are released. This leads to an increase in
the carrier concentration in conduction bands. The electrons, being bounded, can contribute
also to the optical characteristics of the crystal. In particular, they can take part in optical
absorption and emission processes.

The electronic structure of VO was studied within different cluster approaches [1–4]
as well as in the framework of the Green function method [5–11]. All these studies were
performed on the assumption that the symmetry of VO coincides with the point symmetry of
the oxygen site in the ideal crystal. However, recently, it was shown that the single-charged
V+

O may be a dipole centre [12–15]. In this case, an electron captured by VO predominantly
localizes on one of the neighbours to the VO ions. So, in particular, by convention, such a
centre in SrTiO3 may be indicated as Ti3+VOTi4+ (or, equally, as Ti4+VOTi3+). For KTaO3,
it can be represented as Ta4+VOTa5+ and, in the general case, as Mn−1VOMn (figure 1).

In the present work, we shall study the electronic structure of the dipole defect of
Mn−1VOMn type. Now, we wish to emphasize that our theory is of a semiempirical
nature. The values of some parameters of the theory were taken from the band-structure
calculations (hopping integrals) and from experiment (atomic polarizabilities). Nevertheless,
the qualitative results obtained seem to us to be of a general nature. In particular, the
possibility of the existence of the dipole state of the oxygen vacancy in perovskites will be
considered very carefully by taking into account both the covalent effect and the difference
between the local and average fields. On the basis of the results obtained, optical absorption
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Figure 1. The geometry of V+O in OPFs of the
AMO3 kind.

spectra will be computed. We have also carried out a calculation of the electronic structure
of VK in KTaO3. Experiments on optical absorption and emission spectra, electrical
conductivity and photoconductivity will be discussed in part II of this paper.

2. The electronic structure of the oxygen vacancy

It was shown in [5–11] that it is convenient to apply the Green function method to the
calculation of the electronic structure of point defects in OPFs. In this approach, the
complex problem of solving the Schrödinger equation for the whole crystal containing a
point defect is reduced to the comparatively simple problem of describing the scattering of
the Bloch waves by the defect. In the Green function method the main characteristics of the
defect can be exactly obtained by taking into account only the region where the potential is
perturbed. Hereafter we shall use the term ‘the potential’ to mean the matrix of the potential
in the atomic basis, while the ‘perturbation potential’ denotes the difference between the
potentials in the perturbed and ideal crystals.

OPFs usually have a high static dielectric constant. In particular, BaTiO3, KNbO3,
PbTiO3 and others are known by their ferroelectric properties; SrTiO3 and KTaO3 are
incipient ferroelectrics. In this connection, the perturbation potential produced by a point
defect is of small radius. This markedly alleviates the problem and emphasizes proficiency
in the use of the Green function method in this case.

Another special feature of OPFs is that they have an intermediate type of chemical
bond. It is known that, in these crystals, dispersion in the electronic bands is caused by
the nearest-neighbour interactions, i.e. by the interaction between the states of the M and
O atoms [16]. Owing to this simplification, the electron energy as well as the density
of the electron states can be described by analytical expressions (the Wolfram–Ellialtioglu
[17] model). This circumstance helps us to construct convenient analytical formulae for
calculating the ideal crystal Green functions [5–11]. In the present work, we shall employ
just this approach. Note that the second-neighbour interactions were taken into account in
[18] within the continued-fraction method. The results obtained were similar to those found
by the Wolfram–Ellialtioglu model.

In the Green function method, the electron density of states can be expressed through
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Figure 2. The dependence of the local state energies on the perturbation potential on a Ti site
nearest to the oxygen vacancy in SrTiO3. The positions of theπ and σ Fe3+ levels are also
shown (the Fe3+ ion substitutes for the Ti4+ ion).

the diagonal element of the Green function:

NL = − 1

π
Im GLL (1)

whereĜ is defined by the following equation:

Ĝ = ĝ + ĝV̂ Ĝ. (2)

Here ĝ is the ideal-crystal Green function and̂V is the perturbation potential.
The local states can be found in the forbidden gap by solving the equation

det‖Î − ĝV̂ ‖ = 0. (3)

Since in OPFs the potential̂V is of small radius, the matrix in (3) is of low dimensionality.
Thus, this approach to seeking local states has no great quantitative difficulties.

The removal of the oxygen ion from a lattice site leads to a decrease in the number
of atomic orbitals in the atomic basis of the tight-binding method. To take the orbitals of
the oxygen ion away from the basis, one can employ the following procedure [19]. Let us
assume that the oxygen ion orbitals are incorporated in an additional potential. Letting this
potential go to infinity, we remove these orbitals from the basis. The same result could be
achieved by causing the hopping integrals between the oxygen ion and its nearest neighbours
to vanish.

In semiconductors of Si type, the removal of atom orbitals from the basis, i.e. the rupture
of chemical bonds, leads to the appearance of a deep level in the forbidden gap [19]. In
ionic crystals such as KCl, the cavity of the anion vacancy itself can capture an electron,
forming an F centre [20]. In crystals with the intermediate type of chemical bond, the
reason for the appearance of the local level in the forbidden gap can differ from both these
cases. We are considering the possibility that the local state of Mn−1VOMn type, wheren
is the valence state of the ion M in the ideal crystal, occurs.

Figure 2 shows the result of the calculation of the local state energies in the forbidden
gap of SrTiO3 as a function of the perturbation potential on a Ti ion nearest to VO . It is
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seen that increasing the potential leads to splitting the level from theπ band and then from
the σ band. These local states preferentially localize on the ion Ti and oxygen ions nearest
to it.

An estimation of the perturbation potential may be carried out in the continuous approach
using the formula [6]

Vvac(r) =


− z

ε0r
r > r0

− z

ε∞

(
1

r
− 1

r0

)
− z

ε0r
r < r0

(4)

wherez is the effective charge of VO , r0 is the radius of the defect, andε∞ and ε0 are
the high-frequency and static dielectric constants, respectively. Since, in OPFs,ε0 has very
large values (e.g.ε0 = 204 for KTaO3 at room temperature), equation (4) may be rewritten
in the form

Vvac(r) =


0 r > r0

− z

ε∞

(
1

r
− 1

r0

)
r < r0

. (5)

It was shown in [14] that the energy of polarization produced by V+
O decreases when the

electron of V+
O is localized at one of two transition-metal ions nearest to the vacancy. Thus,

an additional term is to be taken into account when calculating the perturbation potential

VO = Vvac + Vpol. (6)

This term,Vpol , is of polaronic nature and is simply a difference between the potentials in
the symmetrical and asymmetrical states of the vacancy. The perturbation potential (6) is
of negative sign and, thus, as can be seen from figure 2, it results in the appearance of a
local state in the forbidden gap.

When an electron occupies the level, the electronic charge of the ion M increases. This
increase, in turn, leads to a change in the perturbation potential. In the linear approximation
we have

VM = VO + U 1qM (7)

whereU is the Hubbard parameter and1qM is the change in the electron charge on the
ion M caused by perturbation of the potential. In the Green function method, this charge
may be found using the expression

1qM = − 1

π
Im

( ∫ εF

(GMM − gMM) dε

)
. (8)

The parameterU in (7) represents the energy of the interaction between two electrons
located at the same centre. Its value may deduced from atomic structure calculations as
a second derivative of the atomic energy on the occupation number or by interpolating
experiments. We employed the valueU = 10 eV [10].

The dependence of the perturbation potential on the occupation number leads to a
dependence of the local state energy on the charge state of the vacancy. In other words,
it implies that, generally speaking, the ionization potential of the electron captured by the
vacancy does not coincide with the one-electron energy of the level in the forbidden gap
and, furthermore, the ionization potential of the single-charged vacancy does not coincide
with the ionization potential of the neutral vacancy.
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The ionization potential may be obtained from the relation [21]

I = E(m − 1) − E(m) =
∫ m−1

m

ε(n) dn (9)

whereE(m) is the total energy of the point defect withm electrons on the local level. It
is interesting that, under reasonable assumptions, the integral in equation (9) may be found
analytically [10]:

I = −ε(m) − 1

2ε∞
Uf 4

M (10)

wherefM is the projection of the wavefunction of the local state onto the basic state located
on a metal ion nearest to the vacancy. The weightfM may be found from the linear equation

(1̂ − ĝV̂ )f = 0 (11)

and the orthonormalization condition written in the form

−f V̂ ĝ′(ε)V̂ f = 1. (12)

Here ĝ′(ε) is the derivative of the Green function̂g(ε) with respect toε.
The results of our calculations have shown that the ionization potential of the neutral

vacancy is very small (it is several hundredths of an electronvolt), at any of the reasonable
values of the model parameters. The corresponding one-electron wavefunction is spread
over a wide region of the crystal near VO . The single-charged vacancy has a deeper level
(table 1). Its energy is several tenths of an electronvolt.

Table 1. The one-electron energies and ionization potentials of the single-charged oxygen
vacancy in different crystals of the perovskite family (z = 2|e|).

ε(0) ε(1) I

(eV) (eV) (eV)

CaTiO3 0.42 0.14 0.25
SrTiO3 0.46 0.14 0.26
BaTiO3 0.55 0.15 0.31
CaZrO3 0.41 0.12 0.23
SrZrO3 0.50 0.13 0.27
BaZrO3 0.51 0.12 0.27
BaHfO3 0.51 0.12 0.26
NaNbO3 0.30 0.11 0.18
KNbO3 0.38 0.12 0.22
NaTaO3 0.23 0.09 0.14
KTaO3 0.29 0.10 0.17

In the next section we shall show that, owing to the polaronic effect, the electron of V+
O

is preferentially located at one of the ions M nearest to the vacancy. However, the direction
of the dipole moment may be easily changed by quantum or thermal fluctuations and, in
particular, by an applied electric or mechanical field.

3. Symmetry breaking at the oxygen vacancy in oxides of the perovskite family

First, symmetry breaking at the oxygen vacancy was proposed in [12, 13] on the basis of a
theoretical analysis. It was proved there that the Hubbard interaction between electrons on
transition-metal ions could cause symmetry breaking.
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The first experimental evidence of this phenomenon was reached by the second-harmonic
generation method in [22]. It was shown that nominally pure reduced samples of KTaO3

have about 1018 cm−3 dipole centres. The concentration of these centres was found to
increase with further reduction in the samples and to decrease on oxidation.

The first theoretical computation of the geometry of VO in SrTiO3 and KTaO3 taking
into account the lattice polarization was carried out in [14]. For this purpose, a small (2×3
unit cells) cluster was used. It was found that the interaction of the electron captured by
the vacancy with the lattice polarization results in symmetry breaking. The energy of the
state where the electron was trapped at one of the metal ions nearest to the vacancy was
proved to be lower than the energy of the state where the electron charge was uniformly
distributed over the ions nearest to the vacancy.

In the present paper, we perform a much more careful investigation of the problem.
The covalent bond effect will be taken into account. By using the Green function method,
we shall evaluate the covalent energy gain and compare it with the polarization energy
decrease. We shall show that the total energy consisting of these two parts decreases when
the point symmetry of VO is broken. Furthermore, we use a correct asymptotic value of
the electric field produced by the vacancy [23].

As in the Mott–Littletone model, we divide the crystal into two parts. The first includes
160 atoms which are treated by the most correct procedure. The second region comprises
about 2000 atoms. The electric field on these atoms is believed to coincide with the correct
asymptotic value obtained in [23].

If the Ta–O chemical bond were of pure ionic character the ionic charge of the oxygen
contribution would equal 2e. However, there is a strong covalent contribution to the Ta–O
bonding. The results of band-structure calculations [16, 17] have shown that the charges
of the Ta and O ions are 2.5e and−1.2e, respectively. These data correspond to the case
when, because of covalent bonding, each Ta ion takes−0.4e from each nearest O ion if one
starts from the pure ionic charges: 5e for the Ta ion and−2e for the O ion. The potassium
atom is simply regarded as a donor for the TaO3 sublattice. Hence, the K charge is 1e.

When V2+
O is created (figure 1), two Ta–O bonds prove to be broken. This means that

each of the two Ta ions acquires the additional charge 0.4e. However, if the local state in
the forbidden gap is occupied by an electron, we should add the charge of this electron.
Our calculations have shown that approximately half the electron charge is localized on the
two Ta ions and the remaining half is on the nearest ten oxygen ions. Thus, the additional
charge of each Ta ion is−0.25e + 0.4e = 0.15e. This holds only for the symmetrical case.
If symmetry breaking occurs, then the additional charge of one of the two Ta ions becomes
−0.5e + 0.4e = −0.1e and the additional charge of each of the five nearest oxygen ions is
−0.1e. The additional charge of the other Ta ion is 0.4e while the additional charges of the
five oxygen ions nearest to it vanish. Having performed the calculation of the polarization
energy we have obtained that the asymmetrical state has a polarization energy 1.6 eV lower
than the energy in the symmetrical case. This value is of the same order as that found in
[14] for SrTiO3 (unfortunately, the value found in [14] for KTaO3 was incorrect because of
a technical mistake).

A few words should be said about the quantitative influence of the choice of the
additional atomic charges on the result. First of all, we should say that the energy of
polarization quadratically depends on the total additional charge. Thus, the increase in the
total additional charge will cause a quadratic increase inVpol . Moreover, if one neglects
the Ta–O covalent bonding and, as a consequence, the electron charge is localized on two
Ta ions nearest the vacancy, then the polarization energy as well asVpol increase very
strongly. Therefore, in the cases mentioned above, one can expect a sharp gain in the
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polarization energy.
Now, let us discuss factors which stabilize the symmetrical state. As we have just seen,

the covalent bond is one of these factors. It leads to a decrease in the additional charge
connected with the captured electron. However, this is not the only way in which covalency
influences the result. Owing to the covalent bond, there is an indirect interaction between
two Ta sites and this interaction obviously stabilizes the symmetrical state. Thus, there is
a necessity to evaluate the energy of the indirect interaction. The following is devoted to
this point.

The contribution of the local electron state to the covalent energy can be evaluated from
the expression

Ecov = 1

2

∑
ni

∑
mj

fni tni,mjfmj (13)

wherefni is the amplitude of the one-electron wavefunction of the local state on theith
atom of thenth unit cell andtni,mj is the hopping integral for nearest neighbours. The
amplitudefni satisfies the following equation:

fni =
∑
mj

gni,mj (ε)Vmjfmj (14)

whereVmj is the perturbation potential,gni,mj is the Green function of the ideal crystal and
ε is one of the roots of equation (3).

Inserting (14) into (13), we have

Ecov = 1

2

∑
ni

∑
mj

Eni,mj
cov (15)

where

Eni,mj
cov = fniVni

∑
ps

∑
uw

gni,ps(ε)tps,uwguw,mj (ε)Vmjfmj . (16)

The non-diagonal elementsEni,mj
cov are the interaction energies between the sites. Thus, only

this quantity needs to be evaluated. To perform the summations in (16) over the lattice
sites we shall employ the following manoeuvre. Let us write the equation defining the
ideal-crystal Green function̂g:∑

mj

[(ε − εj )δnmδij − tni,mj ]gmj,ps = δpnδsi . (17)

Here εj is the energy of thej th orbital in the cell. It is possible to express the matrix
product t̂ ĝ from (17) and to insert the result into equation (16). Hence, (16) is reduced to
the form

−Eni,mj
cov = f ∗

niVnigni,mj (ε)Vmjfmj − f ∗
niVni

∑
ps

(ε − εs)gni,ps(ε)gps,mj (ε)Vmjfmj . (18)

The remaining sum may be treated as follows. Let us write the definition of the Green
function through the eigenvalues and eigenstates of the electron Hamiltonian:

gni,ps(ε) =
∑
τk

〈i|τk〉〈τk|s〉
ε − ετ

k

exp[−ik · (Rn − Rp)] (19)

where τ is the number of the electronic band. By using this expression, the summation
over p can be performed analytically. Indeed,∑

p

exp[iRp · (k − q)] = δkq. (20)
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Thus, the sum in (18) takes the form∑
ps

(ε − εs)gni,ps(ε)gps,mj (ε)

=
∑
ps

∑
τν

∑
k

〈i|τk〉〈τk|s〉〈s|νk〉〈νk|j〉
(ε − ετ

k)(ε − εν
k)

(ε − εs) exp[−ik · (Rn − Rm)]. (21)

To proceed with the remaining sums let us write the equations defining the projections
Cτ

ks ≡ 〈τk|s〉
(ε − εp)Cτ

kps =
∑

u

tkps,duC
τ
kdu

(ε − εd)C
τ
kds =

∑
u

t+kps,duC
τ
kpu.

(22)

HereCkd andCkp are the amplitudes of the wavefunction on the metal-ion and oxygen ion,
respectively;εp andεd are the energies of the p and d orbitals.

Let us multiply the first equation byCν
kps , and the second equation byCτ

kds . Having
found the difference between the results, one can obtain the relation

(ε − εp)
∑

s

Cτ ∗
kpsC

ν
kps = (ε − εd)

∑
u

Cτ ∗
kduC

ν
kdu. (23)

We can add to this relation the orthogonality condition∑
s

Cτ ∗
kpsC

ν
kps +

∑
u

Cτ ∗
kduC

ν
kdu = δτν. (24)

It can be readily found from these equations that∑
s

Cτ ∗
kpsC

ν
kps = ε − εd

2(ε − ε0)
δτν∑

u

Cτ ∗
kduC

ν
kdu = ε − εp

2(ε − ε0)
δτν

(25)

whereε0 is the half-sum ofεp andεd .
The expression obtained holds only for those bands in whichCkd 6= 0. If this condition

fails, then ∑
s

Cτ ∗
kpsC

ν
kps = δτν. (26)

The former case corresponds to the bonding and antibonding states while the latter
corresponds to the non-bonding bands.

Inserting the result obtained into sum (15), we have∑
ps

(ε − εs)gni,ps(ε)gps,mj (ε) = (ε − εd)(ε − εp)

ε − ε0

′∑
kτ

〈i|τk〉〈τk|j〉
(ε − ετ

k)2
exp[−ik · (Rn − Rm)]

+ 1

ε − εp

′′∑
τ

〈i|τk〉〈τk|j〉 exp[−ik · (Rn − Rm)]. (27)

Here, the first sum is performed over the bonding and antibonding states and the second
sum over the non-bonding bands. It is obvious that the second sum vanishes ifi or j

corresponds to a metal site.
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One can express the remaining sums through the Green functions. Indeed

′∑
kτ

〈i|τk〉〈τk|j〉
(ε − ετ

k)2
exp[−ik · (Rn − Rm)]

= − d

dε
gni,mj (ε) − 1

(ε − εp)2

′′∑
τ

∑
k

〈i|τk〉〈τk|j〉 exp[−ik · (Rn − Rm)]. (28)

The last sums in (27) and (28) do not vanish only in the cases whenni = mj and theith
orbital lies on an oxygen ion. Both these conditions fail in our case. Thus, the final result
is of the form

Eni,mj
cov = fniVni

[
(ε − εd)(ε − εp)

ε − ε0

d

dε
gni,mj (ε) + gni,mj

]
fmjVmj . (29)

It is seen that the energy of the indirect covalent interaction between the Ta sites
is expressed through the non-diagonal element of the Green function and its derivative.
By using expressions obtained for the Green functions in [6, 8] we have calculated these
quantities and obtainedET a,T a

cov = −0.1 eV. This implies that the energy of the indirect
covalent interaction between the two Ta sites is much lower than the energy decrease
caused by the lattice polarization. Thus, our computation shows that taking into account
covalent bonding in KTaO3 does not change the qualitative result previously obtained in
[14]. The same can be said about the electric field asymptotic value outside the cluster
used in [14]. Taking into account the correct asymptotic behaviour of the electric field also
does not change the qualitative result obtained in [14]. Therefore, the main reason for the
symmetry breaking at the oxygen vacancy in OPFs is the interaction between the electron
captured by the vacancy and the lattice polarization. The decrease in the lattice polarization
energy arose because the symmetry breaking is much greater than the covalent energy gain.

4. The electronic structure of VA

In the cubic structure of OPFs of the AMO3 kind, the A ion is surrounded by 12 equal oxygen
ions. It was proposed in [24, 25] that a hole captured by a charged acceptor substituted in
the A position can be localized on one of the 12 oxygen ions. The complex A′

AO− is
evidently a dipole centre. The calculation of the polarization energy performed for this
defect within a simple model of polarizable ions [14] showed that the polarization energy
decreases when the hole is localized on a single oxygen ion instead of being spread over
the 12 oxygen ions. The same result holds for the complex VAO−.

Figure 3 represents the results of our computation of the energies of the local states
connected with the complex VSrO− in SrTiO3. One can see that, when the perturbation
potential Vox on the oxygen site is positive, the local levels are split off from the top of the
valence band. This state is localized predominantly on the oxygen site. The evaluation of
the perturbation potential by equation (5) gives the energy of the local ground state in the
range from 0.1 to 0.2 eV.

The shell-model-based simulations of Lewis and Catlow [26] showed that holes are only
weakly bound at barium vacancies in BaTiO3. This result is in good agreement with our
data. This point will be discussed more carefully in a separate part of our work devoted to
experimental results.



6714 S Prosandeyev et al

5. Theory of optical excitations of V+
O in oxides of the perovskite family

By means of the absorption of a quantum, the electron located on one of two Ta ions
nearest to the vacancy can be transferred to one of five nearest oxygen ions. The absorption
coefficient is proportional to the probability of this process:

γ (ω) = 1

�

∫
d3k

∣∣∣∣ 5∑
i=1

〈dTa|M̂|pOi〉Ckpi

∣∣∣∣2

δ(επk − ε − hω) (30)

whereCkpi is the amplitude of the Bloch wave in a conduction band on theith oxygen ion
nearest the Ta ion,επk is the energy dispersion in theπ -conduction band,ε is the energy
of the local state,hω is the energy of the quantum and̂M is the operator of the interaction
between an electron and light. Note that the direct transfer of an electron in the conduction
band between two Ta sites is not realistic because of the very long distance between them
(about 4Å). However, the electron excitation from the Ta ion to the O ions is possible
because of covalent bonding which causes mixing of the Ta and O states in the conduction
bands.

By using the Wolfram–Ellialtioglu [17] model together with the theory of optical spectra
developed in [9, 11, 27] we have performed the integration in (30) analytically. After
averaging the result over the directions of the light polarization and summing over the
π bands the final expression becomes

γ (ω) = 1

8hω(ξ + 1)
[(1 − η − 2η2)K(η′) + 2E(η′)] (31)

where

η = κ − ξ2/4D2 η′ =
√

1 − η2 ξ = ε + hω − ε0 κ = 12 + 4D2

4

K(λ) =
∫ 1

0

dx√
(1 − x2)(1 − λ2x2)

E(λ) =
∫ 1

0

√
(1 − λ2x2) dx√

1 − x2
.

(32)

Here K(λ) and E(λ) are the complete elliptic integrals of the first and second kinds,
respectively, 21 is the width of the forbidden gap,D is the (pdπ ) interaction integral
and ε0 is the energy of the middle of the forbidden gap. Figure 4 shows the calculated
shape of the spectrum for SrTiO3.

In accordance with the experiment [28], the spectrum has a maximum at approximately
1.7 eV. The nature of this maximum is complex. It arises only because of the absence of
an oxygen ion near the M site, i.e. because of the point symmetry breaking at the M site
nearest to the vacancy. To check this assumption we have performed a model calculation of
the optical spectrum of a substitution located at the M site and having the same energy level
as V+

O , but we have not found the band with the maximum at 1.7 eV. Thus, our calculation
supports the idea [28] that the large energy of the optical excitation of V+

O is connected
with the fact that the electron is mainly transferred to the states having large energy with
respect to the bottom of the conduction band.

Thus, in our model, the dispersion in the optical spectra of V+
O is explained by the fact

that the electron is excited to a conduction band having a large width (of approximately
3 eV). Contrary to this the optical spectrum of Fe3+ impurities has very narrow bands. This
can be accounted for because, in this case, the electron transition takes place between the
π andσ levels (figure 2).
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Figure 3. The dependence of the local state energies on
the perturbation potential on an oxygen site nearest to the
Sr position in SrTiO3.

Figure 4. The calculated shape of the absorption spectrum
of V+

O in SrTiO3 (arbitrary units).

In our model we did not take into account the interaction between the electron and
phonons. Nevertheless, the possibility of explaining the optical spectrum of V+

O by the
polaron absorption (intervalence charge transfer) does exist. Apparently, both factors (the
dispersion in the conduction band and the interaction between the electron and phonons)
are important. Thus the theory needs to be developed in this respect.

6. The interaction between microscopic dipoles in polar crystals

In this section we shall discuss the interaction between microscopic dipoles and charges in
polar lattices. By using the mode proposed in [29], we have found the asymptotic behaviour
of the potential and electric field produced by a point charge and by a point dipole in the
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simple-cubic lattice. The result is the following:

ϕ = 1

εR

[
1 + 0.422

(ε − 1)2

ε

( a

R

)2
+ · · ·

]
(33)

Ez = ε + 2

3ε

1

R2

[
1 + 2.11

(ε − 1)(ε − 3
5)

ε

( a

R

)2
+ · · ·

]
(34)

Czz =
(

ε + 2

3

)2 2

εR3

[
1 + 5.908

(ε − 1)(ε − 3
7)

ε

( a

R

)2
+ · · ·

]
(35)

whereϕ is the asymptotic of the potential produced by a point charge,Ez is the electric
field asymptotic,Czz is the asymptotic of the electric field produced by a point dipole,R is
the distance between unit cells anda is the lattice parameter. Note that the usual relation
between the potential and electric field does not hold becauseR is not a continuous quantity
here. There are additional terms in the potential in the case when the charge or point of
view is shifted from the lattice site [29].

It is seen from equation (34) that the electric field produced by a point charge in the
simple-cubic lattice is enhanced by the coefficientµ = (ε + 2)/3. The interaction between
two dipoles is enhanced byµ2. These results were obtained in [30, 31].

The new result is the following. One can see from equation (24) that the distance where
the asymptotic behaviour is valid has to satisfy the condition

R � a

√
5.908

(ε − 1)(ε − 3
7)

ε
. (36)

At large ε we have

R � a(5.908ε)1/2. (37)

The result obtained shows that the region where the crystal is polarized by a point defect
is very large and increases with increasingε. Thus, one can expect that, as the oxygen
vacancy is charged and has a dipole moment, it may strongly polarize surrounding media.
In particular, this can cause an even-field current [32] or even phase transitions [33, 34].

Note that our statement does not contradict the fact that the potential produced by the
oxygen vacancy vanishes at small distances. Indeed, it is seen from equation (33) that, at
large R, the asymptotic of the potential is proportional to 1/εR whereas the asymptotic
of the electric field does not depend onε at largeε. This implies that, at large distances,
the potential on the lattice site is small but the electric field is not small. It should be
remembered that we are discussing the local electric potential and local electric field on the
lattice site. These quantities can differ from the averaged values greatly. It is obvious that
the average electric field as well as the average electric potential are very small at large
ε. The reason for the electric field enhancement is the difference between the local and
average electric fields.

7. Conclusions

In the present work a model of the electronic structure of intrinsic point defects is proposed.
The oxygen vacancies VO and V+

O as well as the vacancy in the A position were considered.
The computed data represented in the paper are consistent with the following statements.

The oxygen vacancy capturing an electron has an eigenstate with an energy of a few
tenths of an electronvolt. This state is localized at an M ion nearest to the vacancy. As
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this centre is charged, it also has a dipole moment with respect to the empty oxygen site.
The dipole moment may be readily changed by applying an external electric or mechanical
field. The energy of the maximum in the optical absorption spectrum of V+

O far exceeds
the thermal activation energy. The neutral oxygen vacancy has to be ionized at room
temperature owing to the small value of the first ionization potential.

The data obtained are consistent with experimental results on optical spectra [28] and
electroconductivity [35]. A careful comparison between the theory and experiments will be
carried out in part II of this paper.
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